
CS3432 Computer Organization
Fall 2025. Final Exam

05/13/2025 – 4:00PM to 6:45PM MDT (theoretical part)
05/13/2025 – 4:00PM to 11:59PM MDT (practical part)

All documents allowed
Electronic devices without Internet connectivity allowed1

You need to turn in the theoretical part of the exam (Sections 1, 2 and 3) by 05/13/2025 6:45PM MDT on
paper, directly to your instructor. You need to turn in the practical part of the exam (Section 4) by

05/13/2025 11:59PM MDT by email to
utep-arc-spring-2025-final@christoph-lauter.org.

1 Encoding Risc-V Instructions
The The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2 contains the
following table on page 104 of the document:

The table lists the encodings of various instructions. It gives the 32 bits of each machine instruction per
operation. In the table, bit b31, the MSB, is on the left, bit b0, the LSB, is on the right. 5 bits are reserved in
the instruction encodings for the register numbers, per register (rs1, rs2 or rd).

Use the table to encode the assembly instruction

xor r4,r7,r3

Give 4 bytes (32 bits) for the encoded instruction. Write the bytes in hexadecimal notation. Remember
that Risc-V is little-endian, so give the byte with the LSB first.

1Put your device into airplane mode.

1

utep-arc-spring-2025-final@christoph-lauter.org


2 Representing Numbers in Computers
1. Encode the value 47806 as a 32bit unsigned integer. Give 8 hexadecimal digits for your final answer.

2. Encode the value −47806 as a 32bit signed integer in two’s complement. Give 8 hexadecimal digits
for your final answer.

3. Encode the value −47806.65625 as an IEEE754 binary32 Floating-Point number. Give 8 hexadecimal
digits for your final answer. Explain the different computational and encoding steps you go through.

4. Decode the IEEE754 binary64 Floating-Point number 0x4084230000000000. Give a real num-
ber, written in decimal, for your final answer. Explain the different decoding and computational steps
you go through.

3 Creating a 1 out of 2k Decoder with NANDs
A 1 out of 2k decoder is a hardware unit that has k input bits sk−1, sk−2, . . . , s1, s0 that form a number

s =
k−1∑
i=0

si 2
i in binary. The decoder also has 2k binary outputs t0, t1, . . . , t2k−1. At any moment, only one

of the outputs ts is 1; all other outputs are 0. The number s of the output ts that is activated (i.e. set to 1) is
given by the input number s.

Let us consider the example of a 1 out of 4 decoder. In this case, k = 2 and we have input bits s1 and s0,
as well as outputs t0, t1, t2 and t3. We get the following truth table

s1 s0 t0 t1 t2 t3

0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

1. Assuming k = 1 to start, design a 1 out of 2 decoder with NAND gates. Your circuit has 1 input s0
and two outputs t0 and t1.

2. Assuming k = 2 and using as many 1 out of 2 decoders and extra NAND gates, design a 1 out of 4
decoder. Your circuit has 2 inputs s1 and s0 and four outputs t0, t1, t2 and t3. It implements the truth
table given above.

3. Describe a recursive mechanism to design a 1 out of 2k decoder for any number of input bits k.

2



4 Coding in C and Risc-V Assembly (Practical Part)
Phone networks, landline and mobile, use digital transmission since the 1970ies. The voice of each party
on the call is digitized by measuring the voltage on the phone’s microphone 8000 times each second. That
voltage results in a 16bit signed integer number. As transmission of 128kbit/s is too expensive, a non-
IEEE754-compliant special Floating-Point representation is used to compress each 16bit signed integer to
an 8bit byte. This reduces the data-rate required to 64kbit/s.

For historical reasons, two different of these special Floating-Point representations are used world-wide.
The United States, Canada and Japan use an encoding called ulaw. All other countries use a different
encoding called alaw. As long as a call stays within the US and Canada (or goes to Japan without crossing
any other country), no conversion from ulaw to alaw and back is required. However, as soon as a call
crosses into any other country, a conversion is required.

This means that, for example, when someone in El Paso, TX, USA, calls someone in Cuidad Juárez,
Chihuahua, Mexico, a computer is needed to convert from ulaw to alaw and back, byte-per-byte, 8000
times per second, in real-time, for the whole duration of the call.

Imagine you work for a company that produces routers for international networking. Your boss charges
you with programming the part that performs alaw-to-ulaw and ulaw-to-alaw conversion. The final result
must run very efficiently, without any overhead, as the device is cheap and does not have a lot of compute
power. Your boss wants you to eventually come up with two functions

unsigned char alaw_to_ulaw_ez(unsigned char a);

and

unsigned char ulaw_to_alaw_ez(unsigned char u);

that perform the job and they want these functions to be handcoded in efficient Risc-V assembly.
Neither you nor your boss have a precise understanding on how ulaw or alaw work. You are hence

happy to find a conversion routines in a file g711.c on the Internet. The file contains two functions
alaw_to_ulaw and ulaw_to_alaw that read like this:

unsigned char alaw_to_ulaw(unsigned char a) {
return slin_to_ulaw(alaw_to_slin(a));

}

unsigned char ulaw_to_alaw(unsigned char u) {
return slin_to_alaw(ulaw_to_slin(u));

}

Hence, you are confident that you can succesfully complete the job your boss gave you. It suffices to
translate the functions to Risc-V assembly!

Unfortunately, you then discover that everything goes down a rabbit-hole very fast: alaw_to_ulaw
calls alaw_to_slin and slin_to_ulaw, which in turn call other functions! Overall, there are over
250 lines of C to be translated to Risc-V assembly and some of the functions, like slin_to_ulaw, look
very nasty.

However, your boss just asked you for assembly for alaw_to_ulaw_ez and ulaw_to_alaw_ez. If
only there were a way to rewrite alaw_to_ulaw and ulaw_to_alaw as _ez variants, without calling
other function and doing nasty bit fiddling...

You decide that this is the path to go:

3



1. You add a main function to the given code to see what comes out of alaw_to_ulaw and
ulaw_to_alaw as a function of the different inputs that these functions take. How many different
inputs are there? Could you precompute the answers and just store them? Or are there too many?

2. You rewrite alaw_to_ulaw and ulaw_to_alaw as alaw_to_ulaw_ez and
ulaw_to_alaw_ez in C, based on what you observed. You make sure that your _ez vari-
ants do not call any other function and that they stay simple.

3. Most importantly, you modify your main function to test your _ez variants of the functions
against the existing functions alaw_to_ulaw and ulaw_to_alaw. For any possibly input,
your corresponding _ez function must output the same result as the original function.

4. Once you are convinced that your alaw_to_ulaw_ez and ulaw_to_alaw_ez functions, as you
have coded them in C, work, you translate them to Risc-V assembly.

For all the work in this Section, you suppose that you are on a system where the C data type
unsigned char yields an 8bit (1byte) unsigned number, unsigned short yields a 16bit unsigned
number and that signed short yields a 16bit signed number in two’s complement.

For this practical part, you need to turn in:

1. A C source code file g711.c where you added a main function that does a reasonable job, as
well as a C code implementation of the functions alaw_to_ulaw_ez and ulaw_to_alaw_ez.
Your C source code file must compile without warnings. You must not modify the existing functions
in the file byte_is_zero, byte_top, alaw_to_slin, slin_to_alaw, ulaw_to_slin,
slin_to_ulaw, alaw_to_ulaw and ulaw_to_alaw.

2. An assembly file g711.s where you implement the functions alaw_to_ulaw_ez and
ulaw_to_alaw_ez in Risc-V assembly. Your assembly file is supposed to be translatable to an
encoded binary object with a Risc-V assembler.

For this practical part, be sufficiently lazy but smart: you are not required to actually translate the
C code directly to assembly. You are just required to provide the functions alaw_to_ulaw_ez and
ulaw_to_alaw_ez in your assembly code.

4


	Encoding Risc-V Instructions
	Representing Numbers in Computers
	Creating a 1 out of 2k Decoder with NANDs
	Coding in C and Risc-V Assembly (Practical Part)

