
CS4375 Operating Systems Concepts
Fall 2024. Midterm II

11/13/2024

You need to turn in the theoretical part of the exam (Sections 1 and 2) by 11/13/2024 11:50AM MST on
paper, directly to your instructor. You need to turn in the practical part of the exam (Section 3) by 11/13/2024
11:59PM MST by email to utep-os-fall-2024-midtermII@christoph-lauter.org. You
need to turn in the C source code file server.c. You can use the dandelion server for development.
Programs that do not compile will receive very little credit. Do not forget to put your name on all sheets of
paper you hand in and into the first couple of comment lines in the source code file server.c. Code is
provided for the client code that goes with the server but no boilerplate code is provided for the server.

1 Scatter-gather SIMD Instructions and Page Faults (10pts)
Computers are used to process data streams that often times come in groups: stereo music has a left and a
right channel, or 3D movie decoding needs to process both the left-eye and the right-eye datastream. Other
problems are called embarrassingly parallel, as they naturally come as several streams of data-processing
tasks with no interdependence. The Basic Local Aligment Search Tool (BLAST) in bioinformatics is an
example algorithm that is embarrasingly parallel.

In order to provide appropriate hardware for such parallel computing tasks, CPU vendors have invented
Single Instruction Multiple Data (SIMD) instruction set extensions: single instructions work on a vector
(i.e. short array) of data points in a parallel fashion:

Examples of such SIMD instruction sets include Intel MMX/SSE/AVX or ARM neon. With the latest
AVX-512 instructions, SIMD instructions work on 512bit wide vectors.

In a SIMD instruction set, all registers contain vectors representing short arrays of elements. The register
width is commonly fixed; the number of elements in a register varies with the size of an element. For
example, an AVX-512 register can hence be split into eight 64bit variables, 16 variables of 32bit width or
even 64 byte-wide variables.

As computing purely in registers does not make sense, SIMD instruction sets all provide instructions to
load SIMD registers from memory and to store their content back to memory. Classical SIMD load/store
instructions work with only one address, i.e. the address to load from or to store to comes from a regular
register, not a SIMD register. A C emulation of an AVX-512 store for 64bit values could be

void avx_512_64bit_store(void *ptr, uint64_t vect[8]) {
int i;
for (i=0;i<8;i++) {

((uint64_t *) ptr)[i] = vect[i];
}

}

1

utep-os-fall-2024-midtermII@christoph-lauter.org


In this C emultation code, the uint64_t vect[8] stands for the SIMD register, which is not stored in
main memory in the actual hardware implementation.

Assuming that ptr is an arbitrary pointer inside the running process’ address space and vect is a
register, explain how many page faults can maximally occur with 4096 byte wide pages, after instruction
fetch and decoding have taken place.

Assume now that ptr is an integer multiple of 64 and remember that 512/8 = 64. Such an additional
requirement is called a vector alignment property. Explain how this reduces the maximum number of
possible page faults. You may use a drawing to illustrate your point.

Unfortunately, certain applications need more than load and store instructions, for which only one address
can be specified. For this reason, the most recent SIMD instruction sets also include so-called scatter-gather
instructions. A scatter instruction works on two SIMD registers. The one register contains pointers, the
other register contains the data. The instruction scatters the data across the whole memory space, storing
the i-th element of the data register at the corresponding i-th address coming from the address register. A
C emulation of an AVX-512 scatter could be

void avx_512_64bit_scatter(void *ptr[8], uint64_t vect[8]) {
int i;
for (i=0;i<8;i++) {

*((uint64_t *) (ptr[i])) = vect[i];
}

}

A gather instruction does the opposite of a scatter instruction, loading the different vector elements of a
SIMD register from the various addresses specified by an address SIMD register. It hence gathers data.

Assuming that vect is a SIMD register and that each of the addresses ptr[i] is an integer multiple of
8, i.e. that the accesses are aligned, explain how many page faults can maximally occur on the above defined
scatter instruction with 4096 byte wide pages, after instruction fetch and decoding have taken place. Also
compute the maximum number of possible page faults if the addresses ptr[i] are unaligned, i.e. if they
are arbitrary addresses.

As always, the use of drawings, along with textual explanations, is recommended for this type of ques-
tions.

2 Virtual and Physical Addresses (40 pts)
Assume a 32bit little-endian system with 32bit virtual and physical addresses, using 4096byte wide (212 =
4096) pages and two levels of 1024-entry page tables (210 = 1024). Each entry of the tables consists of a
32bit physical address to the next table resp. to the physical page and of a 32bit entry with flags (in this
order). The least significant bit in that flags part indicates whether the page is mapped in (if the bit is set to
one) or mapped out (if the bit is set to zero). Each entry in the tables is hence 8bytes wide; remember that
8 = 23.

Below you see a table with an extract of the system’s physical memory1. Let the physical base address
of the first page table be 0xcafe0000.

Use the memory extract and the base address to translate the virtual address 0x52fa8eef to a physical
address. If you cannot perform this translation because the page is not mapped in, indicate that a page fault

1Everything that starts in 0x in this exercise is notated in hexadecimal (base 16). Like always, in this notation, the most
significant digit is to the left, the least significant to the right.

2



occurs. In your answer, detail each step of the translation; do not just give the final translation result.
Remember that the system is little-endian; this means given an address, e.g. 0x12345600, you can

find the least significant byte 0x88 of the (example) 64bit value 0xaabbccddeeff9988 at the address
0x12345600, the next byte 0x99 at 0x12345601 and the most significant byte 0xaa at 0x12345607.

Address (32bit) Content (64bit)
@+0 @+1 @+2 @+3 @+4 @+5 @+6 @+7

0xbeef9390 0x1f 0x2a 0x34 0x42 0xea 0xde 0xca 0xfe
0xbeef9398 0x22 0x00 0x11 0x3f 0x3a 0x42 0x19 0xca
0xbeef93a0 0x00 0x00 0xbb 0xde 0x24 0x34 0x10 0xa3
0xbeef93a8 0x00 0xb0 0xbe 0xba 0x07 0xa0 0xff 0x42
0xbeef93b0 0x2a 0x20 0xbe 0xbe 0x02 0x30 0x23 0x17
0xbeef93b8 0x00 0x1a 0x1a 0x00 0xa0 0x20 0x00 0xff
0xbeef93c0 0x00 0xb0 0xbe 0xba 0x06 0xa0 0xff 0xa4

...
...

0xbeefad30 0x00 0x80 0x12 0x33 0x12 0x20 0xfe 0xc4
0xbeefad38 0x00 0xc0 0xaa 0xf7 0x16 0x42 0x00 0x2b
0xbeefad40 0x00 0xb0 0xad 0xde 0x17 0x42 0xff 0x2a
0xbeefad48 0x00 0xb0 0xad 0xdd 0x18 0x43 0x0f 0x07
0xbeefad50 0xb8 0x80 0xde 0xad 0xca 0xfe 0xaf 0xfe
0xbeefad58 0xb1 0x6b 0x00 0xb5 0x42 0x00 0x00 0xf0
0xbeefad60 0x00 0xfe 0xfa 0xad 0xde 0x02 0x00 0x01

...
...

0xcafe0140 0x20 0x00 0xea 0xad 0x02 0xfe 0x07 0x73
0xcafe0148 0x80 0xff 0x00 0x00 0x00 0xfe 0xff 0x17
0xcafe0150 0x42 0x23 0xc2 0xad 0xde 0x24 0x19 0x88
0xcafe0158 0x23 0x00 0x42 0x2f 0xf3 0xfa 0xfa 0x04
0xcafe0160 0x32 0x37 0x73 0x11 0x42 0x08 0x00 0x80
0xcafe0168 0x00 0x01 0x00 0x02 0x00 0x04 0x00 0x08
0xcafe0170 0x42 0x23 0xc2 0xad 0xde 0x24 0x19 0x8f

...
...

0xcafe0a30 0x20 0x44 0x70 0x7f 0x78 0x00 0x08 0x1a
0xcafe0a38 0x00 0x00 0xbe 0xbb 0x8e 0x0f 0x13 0xff
0xcafe0a40 0x04 0x0f 0xff 0xfe 0x02 0x17 0x22 0x04
0xcafe0a48 0x08 0x84 0x04 0x0f 0xff 0x10 0x02 0x70
0xcafe0a50 0x00 0x90 0xbe 0xba 0x8d 0x0f 0x15 0x4b
0xcafe0a58 0x00 0x90 0xef 0xbe 0x97 0xaf 0x88 0x3a
0xcafe0a60 0x24 0xff 0xff 0x08 0x04 0x05 0x06 0xf2

...
...

0xfffe03a8 0x08 0x90 0xbe 0xba 0x7f 0x7c 0xf8 0x00
0xfffe03b0 0xb8 0x90 0xbe 0xba 0x7e 0x7d 0x07 0x05
0xfffe03b8 0x23 0x02 0xaa 0x02 0xdf 0xa3 0x2a 0x0f
0xfffe03c0 0x45 0x40 0x1a 0x00 0xde 0x39 0x02 0xf7
0xfffe03c8 0x67 0x0a 0xb5 0x04 0xf2 0x2d 0x42 0x77
0xfffe03d0 0x09 0x07 0x23 0x3d 0xda 0x97 0x34 0x81
0xfffe03d8 0xa0 0xb0 0x34 0x08 0x00 0x2a 0x27 0x23

3



3 Practical part: Running a command remotely (50pts)
For this Section, you are going to develop a client-server application that uses TCP/IP to communicate over
the Internet. The task of the application is the following: instead of running a command locally, for example

$ date -u
Tue Nov 12 23:43:16 UTC 2024

the client program is going to connect to a server, specified by an Internet address (a FQDN) and a port
number, and push the command to run as well as the different arguments to the command over to the server.
The server will then execute the command remotely. Standard input of the client will be forwarded to
the TCP/IP connection on the client side and will be forwarded on the server side to a file descriptor that
will serve as the actual processes’ standard input. Standard output of the process will be forwarded on the
server side over the TCP/IP connection to the client, where it will be copied directly onto standard output.
Nonwithstanding buffering effects, the application will run remotely but interactively.

For example, we can have a server running on the Internet address heuschrecke.
christoph-lauter.org, listening for connections on port 9999. A client can then run a command
remotely by executing:

$ ./client heuschrecke.christoph-lauter.org 9999 date -u
Tue Nov 12 23:49:24 UTC 2024

Here, date is the name of the executable that will be run by the server. The string -u is an argument. When
started, the server will not know which command it will eventually run. It will receive all these pieces of
information over the TCP/IP connection.

Your instructor has already entirely programmed out the client program, in the form of program
client.c. That code is available for your reference on the class website.

The client program does the following:

• It verifies it received at least 3 arguments, excluding its own name. It considers argument 1 to be a
server name, argument 2 to be a port name, argument 3 the command to run remotely and arguments
4 and subsequent to be the remote command’s arguments.

• It also verifies that there are no more than 216− 1 arguments to be transmitted to the server, including
the command name. It verifies as well that no argument string (or the command string) is longer than
216 − 1 characters.

• The client opens a TCP/IP connection to the the server with the server and port names that have been
given. If this connection is successful,

• it sends a 16bit unsigned integer in network byte order (big endian) to the server over the TCP/IP
connection. That integer indicates the number of arguments (including the command) that will follow.

• It then sends per argument a 16bit unsigned integer indicating the size of the string that will follow
and the argument string (without its end sentinel ’\0’).

• It then starts sending every byte it receives on its standard input over the TCP/IP link and copies every
byte it receives from the TCP/IP link onto standard output.

• It stops as soon as it receives a End-Of-File condition on standard input or on the TCP/IP link.

4

heuschrecke.christoph-lauter.org
heuschrecke.christoph-lauter.org


The server program must do the complementing part:

• It needs to verify it got started with a valid port indication in argument.

• It then needs to open a socket, bind it to that port and listen for incoming connections.

• As soon as it has an incoming client connection, it needs to accept that connection.

• It then needs to read the number of strings to follow as a 16bit unsigned integer in network byte order
and allocate a correctly sized array for this vector of arguments.

• It then needs to read off the TCP/IP connection the length of each argument string, followed by the
argument string itself. The memory space for the string needs to be properly allocated.

• It finally needs to fork off a child process that is properly connected to the TCP/IP connection, possi-
bly with two pipes (one to the child, one from the child). The child needs to close all unneeded file
descriptors, use dup2 to replace its existing standard input and standard output by a file descriptor
leading (directly or indirectly) to the TCP/IP connection and then must use execvp to replace its
executable by the command’s executable with the arguments received.

• The parent process needs to wait for the child to die, forwarding all data from the TCP/IP connection
to the child and back from the child to the TCP/IP connection (unless another technique is used
instead of pipes).

• At termination, all processes must close all file descriptors and deallocate all memory they have
allocated.

No boilerplate code is provided for this server.c program. You find enough bits and pieces to use in
the programs that we have written in class, in the previous homeworks and exams, as well as in the client
code client.c. Make sure that your program does not leak memory and that it closes all file descriptors
it can close. Remember to use select when you need to read on two file descriptors concurrently. The
client.c code contains an example use of select.

Test your server program using the provided client program. For example, run

$ ./server 9999

in one terminal and then connect to the server over a local TCP/IP connection with

$ ./client localhost 9999 cat

The server should then run the cat program (in a child process) that repeats everything it sees on standard
output on standard input. This means that on the client side you should see input and output repeating:

$ ./client localhost 9999 cat
Hello World
Hello World
How are you?
How are you?

The connection should drop when you press Ctrl-D to send End-Of-File.

5


	Scatter-gather SIMD Instructions and Page Faults (10pts) 
	Virtual and Physical Addresses (40 pts) 
	Practical part: Running a command remotely (50pts) 

